AMAAZE seminar

AMAAZE seminar

Title: Mass Scale Image Analysis For Automated Plant Phenotyping and Classification via Machine Learning
 

November 22, 2019

3:30 - 4:30 p.m., Vincent Hall 20

Riley O'Neill, University of St. Thomas
 
The capacity to quantify crop architecture and morphology is foundational to the development of higher yielding cultivars via hybridization and genetic engineering. However, at the mass scale required by the science, manual plant phenotyping with physical instruments is arduous, time consuming,  subjective, and a leading cause of undergraduate burnout in the UMN plant genetics department. While the process has been slightly improved with manual image analysis, such is almost as time consuming and remains subject to human error. Thereby, in efforts to further expedite phenotyping processes, circumvent human error, and provide more detailed analyses, we aim to completely automate plant phenotyping processes for the UMN plant genetics department and beyond. Working from over 15,000 soybean plants, we’ve advanced robust image processing platforms for measuring petiole and stem length, leaf area, leaf shape via signature curves, and branch angles via energy minimization in 2D, and begun preliminary work at 3D reconstructions from 2D data for 3D branch angles and further analyses. After data extraction and verification, we plan to implement clustering algorithms and machine learning to automatically group plant phenotypes as well as conduct principal component analysis to assemble an allometry space and identify the primary genes of influence.
Riley O'Neill breaking bones with stone tools.